

A. Introduction

Geometric horizontal curves are either sections of circular arcs or spirals.
The primary difference is the curve's radius
Circular arc: single constant radius throughout
Spiral: radius varies along the curve's length
We'll concentrate on circular horizontal curves

Horizontal Curves

B. Nomenclature

Δ - central angle of the curve aka I-angle
Also, deflection angle of the tangent lines
R-radius

Horizontal Curves

B. Nomenclature

Δ - central angle of the curve
R - radius

L - curve Length
LC - Long Chord
$\Delta / 2$ - angle between tangent and long chord

B. Nomenclature

Δ - deflection angle at PI
R - arc radius

L - curve Length
LC - Long Chord

T-Tangent Distance
E - External Distance
M - Middle Ordinate

Horizontal Curves

B. Nomenclature

Degree of Curvature - Indicator of curve sharpness

Two different kinds
Arc Definition, D_{a}
Angle at center of 100.00 ft arc Most common
Used for roads
Chord Definition, D_{c}
Angle at center of 100.00 ft chord Used for railroads

$$
R=\frac{5729.58}{D_{a}}
$$

$$
R=\frac{50}{\sin \left(D_{c} / 2\right)}
$$

C. Equations

1. Components

$$
\begin{aligned}
L & =100(\Delta / D)=\frac{R \pi \Delta}{180} \\
T & =R \times \tan (\Delta / 2) \\
L C & =2 R \times \sin (\Delta / 2) \\
E & =R\left[\frac{1}{\cos (\Delta / 2)}-1\right] \\
M & =R[1-\cos (\Delta / 2)] \quad M \neq E
\end{aligned}
$$

Horizontal Curves

C. Equations

2. Areas

Fillet

$$
A=R^{2}\left[\tan (\Delta / 2)-\frac{\Delta \pi}{360^{\circ}}\right]
$$

Segment

$$
A=R^{2}\left[\frac{\Delta \pi}{360^{\circ}}-\frac{\operatorname{Sin}(\Delta)}{2}\right]
$$

Sector

$$
A=\frac{\Delta \pi R^{2}}{360^{\circ}}
$$

Horizontal Curves

E. Alignment Curves

1. Tangent curves

Smooth line-curve-line transitions
2. Endpoint Stationing PI: point of intersection

PC : point of curvature

$$
\text { Sta }_{\mathrm{pC}}=\text { Stapl }_{\mathrm{pl}}-\mathrm{T}
$$

PT: point of tangent

$$
\text { Sta }_{\text {PT }}=\text { Sta }_{\text {PC }}+\mathrm{L}
$$

Horizontal Curves

$$
\mathrm{Sta}_{\mathrm{PT}}=\mathrm{Sta}_{\mathrm{PI}}+\mathrm{T}
$$

Station equation: PT Back = PT Ahead

From traditional alignment staking

E. Alignment Curves

3. Deflection Angle Method

Traditional method to compute and stake a curve

Deflection angle, δ : angle at PC from tangent to curve point.

Chord, c: straight distance between adjacent curve points

Horizontal Curves

E. Alignment Curves

3. Deflection Angle Method

Compute curve at full (or half) stations.

PC \& PT rarely at +00 station

So have partial arcs (< 100 ft) at begin and end of curve.
In between are 100 ft arcs

Horizontal Curves

E. Alignment Curves

3. Deflection Angle Method

Deflection angle for an arc is half its central angle

Full station arc, $\mathrm{l}=100 \mathrm{ft}$

$$
\delta=D / 2
$$

Chord length:

$$
c=2 R \times \sin (D / 2)=2 R \times \sin (\delta)
$$

E. Alignment Curves

3. Deflection Angle Method

For partial arcs, l < 100 ft

$$
\begin{aligned}
& d=l(D / 100) \\
& \delta=d / 2
\end{aligned}
$$

Chord length:

$$
c=2 R \times \sin (d / 2)=2 R \times \sin (\delta)
$$

Horizontal Curves

E. Alignment Curves

3. Deflection Angle Method

Successive deflection angles
$\delta_{B}=d_{B} / 2$
$\delta_{C}=\left(d_{B}+d_{C}\right) / 2=d_{B} / 2+d_{C} / 2$
$=\delta_{B}+\left(d_{C} / 2\right)$
$\left(\mathrm{d}_{\mathrm{c}} / 2\right)$ is incremental deflection

Each defl angl increases by the inc defl

E. Alignment Curves

3 Deflection Angle Method

 ExampleGiven
PI Sta $=27+10.00$
$\Delta=78^{\circ} 18^{\prime} 00^{\prime \prime} \mathrm{R}$
$D=18^{\circ} 00^{\prime} 00^{\prime \prime}$
Compute
a. curve components
b. end point stations
c. deflection angles method to full stations

Horizontal Curves

E. Alignment Curves

3 Deflection Angle Method
Example
a. Curve components

$$
\begin{aligned}
& R=\frac{5729.58}{D}=\frac{5729.58}{18^{\circ} 00^{\prime} 00^{\prime \prime}}=318.31 \mathrm{ft} \\
& L=100(\Delta / D)=100\left(78^{\circ} 18^{\prime} 000^{\prime \prime} / 18^{\circ} 00^{\prime} 00^{\prime \prime}\right)=435.00 \mathrm{ft} \\
& T=R \times \tan (\Delta / 2)=318.31 \times \tan \left(78^{\circ} 18^{\prime} 00^{\prime \prime} / 2\right)=259.14 \mathrm{ft} \\
& L C=2 R \times \sin (\Delta / 2)=2 \times 318.31 \times \sin \left(78^{\circ} 18^{\prime} 00 \prime / 2\right)=401.93 \mathrm{ft} \\
& E=R\left[\frac{1}{\cos (\Delta / 2)}-1\right]=318.31\left[\frac{1}{\cos \left(78^{\circ} 18^{\prime} 00^{\prime \prime} / 2\right)}-1\right]=92.15 \mathrm{ft} \\
& M=R[1-\cos (\Delta / 2)]=318.31\left[1-\cos \left(78^{\circ} 18^{\prime} 00 \prime / 2\right)\right]=71.46 \mathrm{ft}
\end{aligned}
$$

Horizontal Curves

E. Alignment Curves

3 Deflection Angle Method Example
b. Endpoint Stations

$$
\begin{aligned}
S t a_{P C} & =S t a_{P 1}-T \\
& =(27+10.00)-259.14 \\
& =24+50.86 \\
\text { Sta }_{P T} & =S t a_{P C}+L \\
& =(24+50.86)+435.00 \\
& =28+85.86 \text { Back } \\
\text { Sta }_{P T} & =S t a_{P 1}+T \\
& =(27+10.00)+259.14 \\
& =29+69.14 \text { Ahead }
\end{aligned}
$$

Horizontal Curves

E. Alignment Curves

3 Deflection Angle Method
Example
c. deflection angles to full stations

First partial arc

$$
(25+00)-(24+50.86)=49.14
$$

Last partial arc
$(28+85.86)-(28+00)=85.86$

100 ft arcs in between

E. Alignment Curves

3 Deflection Angle Method
Example
c. deflection angles to full stations

First partial arc: 49.14

$$
\begin{aligned}
& d_{f}=49.14 \times\left(18^{\circ} 00^{\prime} 00^{\prime \prime} / 100\right)=8^{\circ} 50^{\prime} 43^{\prime \prime} \\
& \delta_{f}=8^{\circ} 40^{\prime} 46^{\prime \prime} / 2=4^{\circ} 25^{\prime} 21^{\prime \prime} \\
& c_{f}=2(318.31) \times \sin \left(4^{\circ} 25^{\prime} 21^{\prime \prime}\right)=49.09
\end{aligned}
$$

Last partial arc: 85.86

$$
\begin{aligned}
& d_{l}=85.86 \times\left(18^{\circ} 00^{\prime} 00^{\prime \prime} / 100\right)=15^{\circ} 27^{\prime} 17^{\prime \prime} \\
& \delta_{l}=15^{\circ} 27^{\prime} 14^{\prime \prime} / 2=7^{\circ} 43^{\prime} 39^{\prime \prime} \\
& c_{l}=2(318.31) \times \sin \left(7^{\circ} 43^{\prime} 39^{\prime \prime}\right)=85.60
\end{aligned}
$$

Horizontal Curves

E. Alignment Curves

3 Deflection Angle Method
Example
c. deflection angles to full stations

Full arc: 100.00
D $=18^{\circ} 00^{\prime} 00^{\prime \prime}$
$\delta=18^{\circ} 00^{\prime} 00^{\prime \prime} / 2=9^{\circ} 00^{\prime} 00^{\prime \prime}$
$\mathrm{c}_{\mathrm{f}}=2(318.31) \times \sin \left(9^{\circ} 00^{\prime} 00^{\prime \prime}\right)=99.59$

E. Alignment Curves

3 Deflection Angle Method

Example
c. deflection angles to full stations

Set up curve table
$\delta_{i}=\delta_{i-1}+\operatorname{Inc}$ defl $_{\text {ang }}^{i}$

Sta	chord	Inc defl ang	Total def ang, δ
PT BK 28+85.86	85.60	$7^{\circ} 43^{\prime} 39^{\prime \prime}$	
$28+00$	99.59	$9^{\circ} 00^{\prime} 00^{\prime \prime}$	
$27+00$	99.59	$9^{\circ} 00^{\prime} 00^{\prime \prime}$	
$26+00$	99.59	$9^{\circ} 00^{\prime} 00^{\prime \prime}$	
$25+00$	49.09	$4^{\circ} 25^{\prime} 21^{\prime \prime}$	
PC 24+50.86	0.00	$0^{\circ} 00^{\prime} 00^{\prime \prime}$	$0^{\circ} 00^{\prime} 00^{\prime \prime}$

Horizontal Curves

E. Alignment Curves

3 Deflection Angle Method Example
c. deflection angles to full stations

Set up curve table
$\delta_{i}=\delta_{i-1}+\operatorname{Inc}$ defl $^{2 n g}{ }_{i}$
$\left.\begin{array}{ccl}\text { Sta } & \text { chord } & \begin{array}{c}\text { Inc } \\ \text { defl ang }\end{array}\end{array} \begin{array}{c}\text { Total def } \\ \text { ang, } \delta\end{array}\right]$

Horizontal Curves

E. Alignment Curves

3 Deflection Angle Method
Example
c. deflection angles to full stations

Set up curve table
$\delta_{i}=\delta_{i-1}+\operatorname{Inc}$ defl ang $_{i}$

Sta	chord	Inc defl ang
Total def ang, δ		
PT Bk 28+85.86	85.60	$7^{\circ} 43^{\prime} 39^{\prime \prime}>39^{\circ} 09^{\prime} 00^{\prime \prime}=\Delta / 2$
$28+00$	99.59	$9^{\circ} 00^{\prime} 00^{\prime \prime}>31^{\circ} 25^{\prime} 21^{\prime \prime}$
$27+00$	99.59	$9^{\circ} 00^{\prime} 00^{\prime \prime} 22^{\circ} 25^{\prime} 21^{\prime \prime}$
$26+00$	99.59	$9^{\circ} 00^{\prime} 00^{\prime \prime} 13^{\circ} 25^{\prime} 21^{\prime \prime}$
$25+00$	49.09	$4^{\circ} 25^{\prime} 21^{\prime \prime}=4^{\circ} 25^{\prime} 21^{\prime \prime}$
PC $24+50.86$	0.00	$0^{\circ} 00^{\prime} 00^{\prime \prime}+0^{\circ} 00^{\prime} 00^{\prime \prime}$

Horizontal Curves

E. Alignment Curves

4. Modified Deflection Angle Method

Traditional method drawbacks:
(a) Inefficient - Requires 3 people

One sighting from PC
Two measuring chords
(b) Can't skip a station if its sight is obstructed.

If can't set one point, can't set any after without recalculating or "moving up on the curve"

E. Alignment Curves

4. Modified Deflection Angle Method

Radial stake out from PC.
Chords measured radially from PC, not point-to-point on curve.

Advantages
(a) More efficient; fewer people needed.
(b) can skip curve points and still take subsequent points
(c) easier to calculate

Horizontal Curves

E. Alignment Curves

4. Modified Deflection Angle Method

Curve has a constant deflection rate.

Defl angle for 100 ft arc is $\mathrm{D} / 2$
Defl rate $=(D / 2) / 100 \mathrm{ft}=\mathrm{D} / 200 \mathrm{ft}$

To any curve point:

$$
\begin{aligned}
& l_{i}=\text { Sta }_{i}-\text { Sta } a_{p C} \\
& \delta_{i}=l_{i} \times \text { defl rate } \\
& r_{i}=2 R \sin \left(\delta_{i}\right)
\end{aligned}
$$

E. Alignment Curves

4. Modified Deflection Angle Method Example

$$
\begin{aligned}
& \text { defl rate }=18^{\circ} 00^{\prime} 00 \prime \prime / 200 \mathrm{ft}=0.09^{\circ} / \mathrm{ft} \\
& \mathrm{l}_{\mathrm{i}}=S \mathrm{Sta}_{\mathrm{i}}=(24+50.86) \\
& \delta_{i}=\mathrm{l}_{\mathrm{i}} \times 0.09^{\circ} / \mathrm{ft} \\
& \mathrm{r}_{\mathrm{i}}=2(318.31) \sin \left(\delta_{\mathrm{i}}\right)
\end{aligned}
$$

Horizontal Curves

E. Alignment Curves

4. Modified Deflection Angle Method Example

Total def

$$
\begin{aligned}
& \text { defl rate }=18^{\circ} 00^{\prime} 00 \prime \prime / 200 \mathrm{ft}=0.09^{\circ} / \mathrm{ft} \\
& \mathrm{I}_{\mathrm{i}}=\mathrm{Sta}_{\mathrm{i}}=(24+50.86) \\
& \delta_{i}=l_{\mathrm{i}} \times 0.09^{\circ} / \mathrm{ft} \\
& \mathrm{r}_{\mathrm{i}}=2(318.31) \sin \left(\delta_{\mathrm{i}}\right)
\end{aligned}
$$

Sta	arc, l_{i}	Total def ang, δ_{i}	Radial chord, r_{i}
PT Bk 28+85.86			
$28+00$			
$27+00$			
$26+00$			
$25+00$	0.000	$0^{\circ} 00^{\prime} 00^{\prime \prime}$	0.00
PC 24+50.86	0.00		

Horizontal Curves

E. Alignment Curves

4. Modified Deflection Angle Method Example
defl rate $=18^{\circ} 00^{\prime} 00$ " $/ 200 \mathrm{ft}=0.09^{\circ} / \mathrm{ft}$
$\mathrm{l}_{\mathrm{i}}=$ Sta $_{\mathrm{i}}=(24+50.86)$
$\delta_{i}=l_{i} \times 0.09^{\circ} / \mathrm{ft}$
$r_{i}=2(318.31) \sin \left(\delta_{i}\right)$
Total def
Radial

Sta	arc, l_{i}	Total def ang, δ_{i}	Radial chord, r_{i}
PT Bk 28+85.86			
$28+00$			
$27+00$			
$26+00$	49.14	$4^{\circ} 25^{\prime} 21 "$	49.09
$25+00$	0.000	$0^{\circ} 00^{\prime} 00^{\prime \prime}$	0.00
PC 24+50.86	0		

Horizontal Curves

E. Alignment Curves

4. Modified Deflection Angle Method Example
defl rate $=18^{\circ} 00^{\prime} 00^{\prime \prime} / 200 \mathrm{ft}=0.09^{\circ} / \mathrm{ft}$
$\mathrm{l}_{\mathrm{i}}=$ Sta $_{\mathrm{i}}=(24+50.86)$
$\delta_{i}=l_{i} \times 0.09^{\circ} / \mathrm{ft}$
$r_{i}=2(318.31) \sin \left(\delta_{i}\right)$

Sta	arc, l_{i}	Total def ang, δ_{i}	Radial chord, r_{i}
PT Bk 28+85.86	$435.00=L$	$39^{\circ} 09^{\prime} 00^{\prime \prime}=\Delta / 2$	$401.93=L C$
$28+00$	349.14	$31^{\circ} 25^{\prime} 21^{\prime \prime}$	331.90
$27+00$	249.14	$22^{\circ} 25^{\prime} 21^{\prime \prime}$	242.83
$26+00$	149.14	$13^{\circ} 25^{\prime} 21^{\prime \prime}$	147.78
$25+00$	49.14	$4^{\circ} 25^{\prime} 21^{\prime \prime}$	49.09
PC 24+50.86	0.000	$0^{\circ} 00^{\prime} 00^{\prime \prime}$	0.00

Horizontal Curves

E. Alignment Curves

4. Modified Deflection Angle Method Example

Another advantage: can compute \& stake any curve point.

Sta 27+60:

$$
\begin{aligned}
& \mathrm{l}=(27+60)-(24+50.86)=309.14 \mathrm{ft} \\
& \delta=309.14 \mathrm{ft} \times 0.09^{\circ} / \mathrm{ft}=27^{\circ} 49^{\prime} 21^{\prime \prime} \\
& \mathrm{r}=2(318.31) \sin \left(27^{\circ} 49^{\prime} 21^{\prime \prime}\right)=297.13 \mathrm{ft}
\end{aligned}
$$

Horizontal Curves

F. Curves and Traverses

a. Typical Uses

Tangent \& non-tangent applications

Boundaries are mixture of straight and curved lines.

F. Curves and Traverses

b. Parcels

Curvilinear parcel boundaries.
Curves may or may not be tangent

Horizontal Curves

F. Curves and Traverses

b. Parcels

Curvilinear parcel boundaries.

To determine parcel area:
(1) Compute area by coordinates bounded by straight lines

F. Curves and Traverses

b. Parcels

Curvilinear parcel boundaries.

To determine parcel area:
(1) Compute area by coordinates bounded by straight lines
(2) Add segment area 1, subtract segment area 2

Horizontal Curves

G. Problems

1. What curve radius meets this design?

G. Problems

2. Given:

PI Sta $=25+00.00$
$\Delta=65^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{L}$
$\mathrm{R}=700.00 \mathrm{ft}$

Part a. What are the PC \& PT stations?

Part b. What is the chord distance between the first and last full stations on the curve?

Horizontal Curves

G. Problems

3. What is the area bounded by the southern curve and its chord?

G. Problems

4. What is the radius of the curve which is tangent to all three lines?

Horizontal Curves

G. Problems

5. What is the area between the two tangent circular arcs and tangent lines?

