# Horizontal Circular Curves Review

Blue Mountain Chapter PLSO
November 2023
presented by
Jerry Mahun, PLS
jerry.mahun@gmail.com
715-896-3178
web: jerrymahun.com



# A. Introduction Geometric horizontal curves are either sections of circular arcs or spirals. The primary difference is the curve's radius Circular arc: single constant radius throughout Spiral: radius varies along the curve's length We'll concentrate on circular horizontal curves R R Horizontal Curves



# B. Nomenclature Δ - central angle of the curve aka I-angle Also, deflection angle of the tangent lines R - radius Horizontal Curves



### B. Nomenclature

- $\Delta$  deflection angle at PI
- R arc radius
- L curve Length
- LC Long Chord
- T Tangent Distance
- E External Distance
- M Middle Ordinate



### **Horizontal Curves**

### B. Nomenclature

Degree of Curvature - Indicator of curve sharpness

Two different kinds

Arc Definition, D<sub>a</sub>

Angle at center of 100.00 ft arc

Most common

Used for roads

Chord Definition, D<sub>c</sub>

Angle at center of 100.00 ft **chord** 

Used for railroads



$$R = \frac{5729.58}{D_a}$$



$$R = \frac{50}{\sin\left(\frac{D_{c}}{2}\right)}$$

### C. Equations

1. Components

$$L = 100 \left( \frac{\Delta}{D} \right) = \frac{R\pi\Delta}{180}$$

$$T = R \times \tan\left(\frac{\Delta}{2}\right)$$

$$LC = 2R \times \sin\left(\frac{\Delta}{2}\right)$$

$$E = R \left[ \frac{1}{\cos\left(\frac{\Delta}{2}\right)} - 1 \right]$$

$$M = R \left[ 1 - \cos\left(\frac{\Delta}{2}\right) \right]$$
  $M \neq E$ 

Two geometric elements must be defined to fix a curve

**Horizontal Curves** 



## C. Equations

2. Areas

Fillet

$$A = R^2 \left[ \tan \left( \frac{\Delta}{2} \right) - \frac{\Delta \pi}{360^{\circ}} \right]$$

Segment

$$A = R^2 \left[ \frac{\Delta \pi}{360^{\circ}} - \frac{Sin(\Delta)}{2} \right]$$

Sector

$$A = \frac{\Delta \pi R^2}{360^{\circ}}$$











3. Deflection Angle Method

Compute curve at full (or half) stations.

PC & PT rarely at +00 station

So have partial arcs (< 100 ft) at begin and end of curve.

In between are 100 ft arcs



### **Horizontal Curves**

### E. Alignment Curves

3. Deflection Angle Method

Deflection angle for an arc is half its central angle

Full station arc, l = 100 ft

 $\delta = D/2$ 

Chord length:

 $c = 2R \times \sin(D/2) = 2R \times \sin(\delta)$ 



3. Deflection Angle Method

For partial arcs, 
$$l < 100 \text{ ft}$$
  
 $d = l(D/100)$   
 $\delta = d/2$ 

Chord length:

$$c = 2R \times \sin(d/2) = 2R \times \sin(\delta)$$



### **Horizontal Curves**

### E. Alignment Curves

3. Deflection Angle Method Successive deflection angles

$$\delta_B = d_B/2$$
 $\delta_C = (d_B + d_C)/2 = d_B/2 + d_C/2$ 
 $= \delta_B + (d_C/2)$ 

 $(d_C/2)$  is incremental deflection

Each defl angl increases by the inc defl



3 Deflection Angle Method

Example

Given

PI Sta = 27+10.00

 $\Delta = 78^{\circ} 18'00'' R$ 

D = 18°00'00"

### Compute

- a. curve components
- b. end point stations
- c. deflection angles method to full stations

### **Horizontal Curves**

### E. Alignment Curves

3 Deflection Angle Method Example

a. Curve components

$$R = \frac{5729.58}{D} = \frac{5729.58}{18^{\circ}00'00''} = 318.31 \text{ ft}$$

$$L = 100 \left(\frac{\Delta}{D}\right) = 100 \left(\frac{78^{\circ}18'00''}{18^{\circ}00'00''}\right) = 435.00 \text{ ft}$$

$$T = R \times \tan(\frac{\Delta}{2}) = 318.31 \times \tan(\frac{78^{\circ}18'00''}{2}) = 259.14 \ ft$$

$$LC = 2R \times \sin(\frac{\Delta}{2}) = 2 \times 318.31 \times \sin(\frac{78^{\circ}18'00''}{2}) = 401.93 \ ft$$

$$E = R \left[ \frac{1}{\cos(\frac{\Delta}{2})} - 1 \right] = 318.31 \left[ \frac{1}{\cos(\frac{78^{\circ}18'00''}{2})} - 1 \right] = 92.15 \ ft$$

$$M = R \left[ 1 - \cos\left(\frac{\Delta}{2}\right) \right] = 318.31 \left[ 1 - \cos\left(\frac{78^{\circ}18'00''}{2}\right) \right] = 71.46 \text{ ft}$$



















4. Modified Deflection Angle Method

Radial stake out from PC.

Chords measured radially from PC, not point-to-point on curve.

### Advantages

- (a) More efficient; fewer people needed.
- (b) can skip curve points and still take subsequent points
- (c) easier to calculate



**Horizontal Curves** 

## E. Alignment Curves

4. Modified Deflection Angle Method
Curve has a constant deflection rate.

Defl angle for 100 ft arc is D/2 Defl rate = (D/2)/100 ft = D/200 ft

To any curve point:

$$l_i = Sta_i - Sta_{PC}$$

$$\delta_i = l_i \times defl rate$$

$$r_i = 2R \sin(\delta_i)$$



### 







4. Modified Deflection Angle Method Example

Another advantage: can compute & stake *any* curve point.

Sta 27+60:

l = (27+60)-(24+50.86) = 309.14 ft

 $\delta$  = 309.14 ft x 0.09°/ft = 27°49'21"

 $r = 2(318.31)\sin(27^{\circ}49'21'') = 297.13 \text{ ft}$ 





















